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THE FREE OSCILLATIONS OF A VISCOUS TWO-LAYER FLUID IN A CLOSED VESSEL* 

S.YA. SEKERZH-ZEN'KOVICH 

The spatial, infinitely small oscillations of a viscous two-layer heavy 
fluid in a vessel of arbitrary shape are investigated. The Reynolds num-- 
ber is assumed to be large (low viscosity) which enables one to use the 
ideas of boundary-layer theory and the Krylov-Bogolyubov averaging 
method. Boundary-layer theory is used as in /l/ and /2/ in which linear 
problems on the oscillations of a compressible medium with a low 
viscosity were solved. Approximation formulae are derived for the 
velocity components of the fluid and, also, for the damping coefficient 
and the correction to the frequency of the free oscillations of an ideal 
fluid. Like the analogous quantities in /l/, these quantities are 
expressed in terms of the eigenvalues and eigenfunctions of the 
corresponding problem on the oscillations of an ideal fluid. It is 
found that the damping coefficient and the correction to the frequency, 
even in the first approximation with respect to the small parameter, 
also depend, as in the two-dimensional case, on the loss of energy in 
the boundary layers close to the boundary of separation of the two-layer 
fluid. In the case of a homogeneous fluid in an open vessel, the energy 
losses close to the free surface of the fluid are asymptotically small 
(see /l/) compared with the losses close to the walls of the vessel. 
Expressions for the damping coefficient and the correction to the 
frequency of the vibrations for vessels with the form of a rectangular 
parallelepiped and a circular cylinder are given as examples. 

The free vibrations of a homogeneous viscous heavy fluid in a vessel of arbitrary shape 
were investigated in /l/. The two dimensional oscillations of a viscous two-layer fluid were 
considered in /3-5/. 

1. Initial equations. Let us consider the problem of the free, infinitely small, oscil- 
lations of a two-layer, heavy, viscous, compressible fluid which completely fills a closed 
vessel. We assign the index 1 to all quantities referring to the upper layer of the lighter 
fluid and the index 2 to all quantities referring to the lower layer. In the domains D, 
occupied by the fluid, the velocities U, (m =I, 2) of the fluid particles and the pressure, 
P mr must satisfy the Navier-Stokes and continuity equations, The velocities U, must be 
equal to zero on the walls of the vessel, S,. The velocities U, and U,, as well as the 
normal and tangential stresses, must remain continuous on crossing the boundary of separation 
of the fluid layers, C. By virtue of the assumption regarding the infinite smallness of the 
motions, we assume that the domains D, and the surface C are always the same as inthe equilib- 
rium state of the fluid. We also assume that the partial derivative of the elevation of the 
boundary of separation H, with respect to time is equal to the vertical components of the 
velocities of the upper and lower fluids. 

au,/at = -pm-lvP, -gk + v,AU, dlv U, = 0 in D, 

U, = 0 on s, 

-Pp,- -$H+2~@1~ auIz _ --P+!$H++v,p,-_ auzz 

VlPl i 
T+~)=ypp*(*+2&), +xxy-- au,& 

‘I = UZ* urn, = 8H (~9 Y, t)/at on Z, m = I, 2 

Here pm is the density, v, are the kinematic viscosities of the fluids, and the rectangular 
Cartesian coordinate system xyz 
while the 

is chosen such that the xy plane coincides with the C plane 
z-axis and the unit vector k are-directed vertically upwards. 

Let us now introduce dimensionless variables by adopting the characteristic size of the 
vessel, d, as the unit of length and To = l/coo as the unit of time, where o0 is the smallest 
characteristic vibrational frequency of the ideal fluid: 
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x = dx*, y = dy*, z = dz*, t = t*/wO, p1 = pp2, v1 = vvz 

U, = doau,, P, = -gp,z + dQ~,~p,p,, H = dq 

(1.2) 

The velocity vectors of the fluids, U, are represented in the form 6f the sum of potential 
and vortex components 

ul7l ==--$&+v, (1.3) 

and, here and below while omitting the asterisk, we assume that pm =&pm/& and the functions 

% and vm satisfy the equations 

A%., = 0; av,lat = R-'~,,,Av,, div V, = 0 (1.4) 

in D,. (R = o&%2, p,,, = v&m + 62, and 6kl is the Kronecker delta). 
The differential equations of the problem will then be satisfied in the domains D,. The 

boundary conditions for cp,and v, are written as: 

VT, = v, on S, (4.5) 
vq, - vc& = v2 - VI 

We subsequently assume that R>l. 

2. Genera2 soktion scheme. The system of Eqs.tl.4) is a singularly perturbed system 
since it contains a small parameter i/R accompanying the highest derivative. We seek the 
asymptotic solution of problem (1.4)-(1.5) in the form of the sum of a regular part which 
approximates the solution at the internal points of the domains D, and the boundary-layer 
parts which only play a substantial role in the subdomains, DFs and D,,,z adjacent to the 
surfaces S, and C. 

Let us put 

cp ,,, ='D,,,E@,,, + R-"*'I$,I +... (2.1) 
V - sv, m- + Xv, = Sov, + R-"J&v, + . . . + XOv, + R-'/l IXIv,,, 

Here CD,,, is the regular part of the asymptotic expansion while Sv, and Zv, are the 
boundary-layer terms which are only substantial in D,s and D,r respectively. 

We now introduce the curvilinear orthogonal coordinates sl,s, and s into D,s such 
that the surface s=o coincides with the surfaces S, and s> 0 in D,. Into D m~f we 

introduce the rectangular Cartesian coordinates x, Yin and z, such that the x-axis coincides 
with the axis of the initial coordinate system, YmE 2 and the z, -axes are directed into 
the domain D,. 

We treat the boundary-layer Sv, and Xv,,, terms as functions of sl,sz and a and x, ym 

and 5, respectively where 0 = R'f*s, 5, = R'faz, are "extended" coordinates. We require that 

the boundary-layer functions should satisfy the conditions 

sv,-+o when rr-tm; zv,-+o when 5, --tm (2.2) 

Let us substitute the expansion (2.1) into the system of Eqs.Cl.4). We obtain separate 
equations for the regular and boundary-layer terms and we assume that the functions @,,, as 
well as the Lam& parameters of the curvilinear coordinate systems which have been introduced 
vary slowly in the boundary layers D,,,s and D,r as the coordinates s and Z, vary compared 

with the function Sv, and ZV,. We shall therefore subsequently consider Q,,, as functions 

of the initial coordinates x, 9, z and the Lame parameters H,(l = 1,2,3) as functions of 

%r % and s, that is, we shall not introduce the arguments of the "extended" variables o 

and 5, into them. 
We will now substitute expansions (2.1) into the boundary conditions (1.5) and obtain 

relationships on S, and C which link the regular and boundary-value terms of the expansions. 
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3. The zeroth approximation. Let us construct the zeroth approximation, that is, the 
functions which satisfy problem (1.4), (1.5) with an accuracy up to 0(&-'/a). 

By considering quantities of the order of R'f* in the last equation of (1.4) and quantities 
of the order of R” in the second equation which has been projected onto the direction of the 
coordinate line s, we have 

By solving these equations allowing for the conditions (2.2) and,, also, the analogous 
equations for C,LJ,~~, we find that 

s,v,, = ZoVmtm =o (3.1) 

By considering quantities of the order of R” in the first equation of (1.4) and in those 
of the boundary conditions (1.5) which contains SO&S and Za~m~mr we arrive at the follow- 
ing boundary-value problem: 

A@,,,,, = 0 in D, (3.2) 

a*mJ r=o on S, 

amp0 a@,, 
az 

8% _. -ar- t 7-P *+F$(@,,,-&,)=O "on I: 

Here and below, n is the normal to the bounding surface of a domain D, which is internal with 
respect to this domain. 

The functions 

GO (MY t) = CflnO (M) cosII, 0) (3.3) 

(act& = 0, d$lca = q 5.j = o/wJ 

are particular solutions of the problem. 

Here, f,,P) is an eigenfunction of the boundary-value problem which is obtained from 
(3.2) after the operation of differentiation with respect to t has been replaced in the second 
boundary condition on C by multiplication by -@, where the product -Pi9 is equal to one of 
the eigenvalues of problem (3.2). 

We note that problem (3.2) has a discrete spectrum of eigenvalues and, moreover, they are 
of finite multiplicity. We denote by f,,,,(M) one of the eigenfunctions which corresponds to 
the selected eigenvalue. 

The solutions (3.3) describe the natural oscillations of an ideal fluid which have a 
constant amplitude C and a phase g(t) which varies uniformly with time. 

In treating the natural oscillations of a viscous fluid, we select the functions @,,(M,t) 
in the form of (3.3) and, following the idea behind the method of averaging, we assume that 
the amplitude of the oscillations C and the rate of change of the phase d$ldt vary slowly 
with time depending on the magnitude of the amplitude C itself and the phase difference 8= 
$ -Q. Let us put I 

dC/dt = R-“*A, (C, e) + R-IA2 (C, e) + . . . 

d$ldt = 3 + R-“G, (C, e) + R-~B~ (C, e) + . . . 

(3.4) 

where A, (C, e), B, (C, e), A, (C, e), . . . are periodic functions of 8 with a period of 2n which, 
like the expansion coefficients (2.1), are to be defined from problem (1.4), (1.5). 

In calculating the partial derivatives with respect to time of the functions occurring 
in the second 
the functions 
t are defined 
relationships 
respect to t: 

and third equations of (1.4) and the second conditions of (1.5), we assume that 
are explicitly dependent on C and + and that the derivatives with respect to 
by formulae (3.4). For instance, the following expansions (we take account of 
(2.1) and (3.4)) hold in the case of the derivatives of the functions D,,, with 
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Let us now find the functions ~Ov,,, ~iov,y,, SOv,~, where I = I,, 2. 
The equations and boundary conditions for the functions Z,, which can be derived from the 

second equation of (1.4) and the second and third conditions of (1.5) using formulae (3.3) 
and (3.4) are: 

(the upper sign is taken when %I = %, = % =x and the lower sign when j, = y,, %* = Y,, % = Y). 
We note that y, = -y, = y and that the functions f,,,o are assumed to be dependent on 

the initial Cartesian coordinates X, y, z. 
When account is taken of the requirement (2.2), the solutions of the latter equations 

have the form 

the minus sign being taken when %,=x, % =I and the plus sign when %, = Y,, % = 5. 
The functions Sovmlr where 1 E 1,2, which are found using the boundary conditions (1.5) 

on S,, are 
S&nl = H;%fmOlasl is, ce cos (I+ - no) (3.7) 

Here, H1 and H, (H, = 1) are the Lam;! parameters of the coordinate system Sl, s2, s. 
By considering terms of the order of R0 in the third equation of (1.4) and allowing for 

formulae (3.6) and conditions (2.2), we get 

wntm = (&I - PI&,,,) (‘/,vli+Ee-of”’ Q ($ - QL) (3.8) 

s,vma = (ll,p,l~S)'%,,Ce-Q~Q (9 - Qo) 
Q (a) = cos a + sin CL, E = (@/ax2 + asiaya)(fio - fiO) 11+ 

We note that the relationship 

PQl~, + &V16. 16,==6*=0 = 0 

follows from the first equality of (3.8). 

(3.9) 

4. Formulae for the damping coefficient and the correction to the frequency. In order to 
derive formulae for the damping decrement and the correction to the frequency of the natural 
vibrations of an ideal fluid, we construct a number of first approximation equations in which 
problem (1.4), (1.5) is satisfied with an adcuracy up to 0 (R-1). It can be shown that, if 
terms of the order of R-‘/z are equated in the second equation of (1.51, then the functions 

81GnK,, &urn,, which are defined by formulae (3.8), will satisfy the resulting equations. 

The equations and boundary conditions for @,ml have the form 

By reasons of arguments which are presented below, the functions z@,,,, ~O~,y,,, and S,V,, 
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are omitted on the right-hand sides of the equalities (4.2) and (4.3) respectively, 
According to relationships (3.3) and (3.81, the right-hand sides of (4.2) and (4.3) depend 

on J1 according to the signs of sin* and oestp- It may therefore be assumed that the sol- 
utions CDS% of problem (4,l>-f4.3f satisfy the relationship a~~~/~ = -@,- When this is 
taken into account and, afso, the representation 13.3) and relationship t3.91, we can write 
the boundary condition on C as: 

The parameter m2, selected in paragraph 3, in equal to the characteristic number for 
problem (4.l.), (4.2) and (4.4). A solution of the inhomogeneous boundary-value problem there- 
fore only exists wheh conditions are imposed on the right-hand sides of relationships (4.2) 
and 14.41. These conditions enable us to find the magnitudes of A, and Br which determine 
the rate of the slow change in the amplitude C and the phase Ip of the vibrations. 

Let us derive these conditions making use of a procedure which is analogous to that used 
in fl/. 

Assuming that the solution of the above-mentioned boundary-value problem, that is, the 
functions Oml have been found, we write Green's formulae for the functions fmo and Qrnr: 

By substituting expressions for the derivatives of the functions fme and %u, determined 

from (3.21, (3.3), (4.2) and (4.4), we get 

We note that, if the functions &vnrr,&n~~~ had not been omitted from the right-hand 

sides of formulae 14.2) and (4.31, integrals having an order of & -'~~'wouLd have occurred on 
the left-hand sides of the latter equalities which equally would have had to be discarded in 
this approximation. 

By multiplying the latter relationship, in which we have chosen m =f, by P and summing 
it with the relationship in which m =I& we obtain, after some reduction using Eqs.(3.1) and 
13-91 

The components of the vectors &vrr X,v,, *.., &v* are defined by the formulae (3.ff, 13-t;)- 
(3.8) and, moreover, it is assumed that the components of the vectors S*vm and &vm, which 
are tangents to the surfaces S, and E: respectively, are equal to zero. We denote by nl and 
n, the unit normals to the boundaries of the domains &, and C which are internal with 
respect to these domains. 

We transform the right-hand side of (4.5), having made use of Gauss's theorem and taking 
account of the fact that the vectors s m can be considered as being solenoidal in i.& (in fact, 
s,,, are sofenoidal with an accuracy up to of*l*j in &sI&r. and fern 1 decay rapidly as the 
point of integration becomes more remote from the boundaries ofL),& We get 

~(1 --p)~~~~(Alsin~ + CB,o~s~)S(~f,,/~z)~dT:= -p S Vf,,a,dv- S Vf,,a,du (4.6) 
E n, D. 
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The integrals over the subdomains Dm8 and DmZ make the main contribution to the right- 

hand side of (4.6). In these subdomains, the derivatives of the functions f,,_, with respect 
to s and z, can be taken as being equal to zero with an accuracy up to 0 (R-‘I*), while the 
derivatives with respect to s,, s, and 5, Ym respectively interchange their values when 
s=z*= 0. Allowing for this we integrate, in the volume integrals of (4.6), with respect 
to S and .zm within the limits from 0 to M as a result of which the integrals are reduced to 
surface integrals and the equality (4.6) takes the form 

2'ft (1 - p) F-~-“l~ (A, sin 11, + CB, cos 9) = -CZ (cos ‘II, + sin I#) (4.7) 

Whence 

A, = -CF2-"Iass"l* (1 - p)-' I, B1 = AJC 

By substituting the values of Al and & which have been found into Eqs.(3.4) and 
introducing dimensional variables once again using formulae (1.2), we arrive at the following 
expressions for the dimensional damping coefficient and the correction to the frequency: 

a = A,o,C-l&'/z = -(2-Yy&% le (1 - P)l-' Z (4.8) 

Ao = B,o,R-“a = a 

The quantities containing I, and I, determine the mechanical energy losses on the bound- 
ary of separation between the fluids, while the quantities containing Z, and I, determine the 
energy losses on the walls of the vessel. In the general case, all these quantities are of 
the same order of smallness R-Ifs. In the specific case of a homogeneous fluid when p =o, 
the energy losses on the free surface have a higher order of smallness which follows from (4.7) 
and (4.8) and from formula (2.21) in /l/ to which (4.8) reduces when p =o. 

5. ExumpZes. Let US consider a vessel which has a vertical lateral surface, a planar 
bottom and a planar upper cover and select the function f,to(M) in the form (h,, are the 

depths of the fluid layers) 
f,,,o = (-l)"'+l~h-~ x&,, xn (2, Y) ch {%,I&, + (-1) ""21) 

where xn (2, Y) is one of the eigenfunctions of the problem 

A.&+ x,,~x,, = 0 in z, axnian=o on r (5.1) 

and A. is the Laplacian operator with respect to the variables x and y and r is the curve 
along which the plane Z (z=O) intersects the lateral surface of the vessel. The frequency 

0, of the vibrations of an ideal fluid is expressed in terms of x, using the formula 

ona = gx, (pz - ~1) (PZ cth %hz + ~1 cth %&I)-' (5.2) 

By substituting the functions fmo into (4.7) and integrating with respect to z, we get 

Here, a/al, are the derivatives with respect to the tangent to the curve r in the C 
plane. f 

In order to calculate the damping coefficient and the correction to the frequency, it is 
necessary to find the characteristic numbers Y.,, and the eigenfunctions x,, of problem (5.1) 
and, then, uisng formulae (5.31, to calculate I,,(m=1,2,3,4) and to substitute the I,, into 
(4.8) and, at the same time, to adopt o, defined by the equality (5.2) as O. 

We will present the final expressions for I, (m= 1,2,3,4) for two cases. 
A. The vessel has the form of a rectangular parallelepiped 0< < ,z,a,Od~~b,--h~~z~h~. In 
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this case 

% =$l -g+$ ( )“‘, x,,=cos~cos+, s=O,l,..., r=l,2 ,... 

1 
I 

m 
=- 2(2fpo) {$[g+++)+&(+++)]- shax,,h, 

B. The vessel has the form of a circular cylinder OdR*<d,O~,<<22n,-~~r~h,. In this 
case xsr = v,Jd, s, r= 1, 2, . . ., where v;11 are the successive positive zeros of the derivatives of 
the Bessel functions (I,' (Q) = 0, 0 <v,, <v~ <. ..) 

xor = 2-‘fSJ, (v,,,R*/d), x$’ = JS (v,,R*/d) cos q, xi:’ = J, (v,,R*/d) sin op 

nJ,* (~8,) 
Im= Ish=x,,h, C 
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